Category: Calculus

비판정법(ratio test)과 근판정법(root test)

      Comments Off on 비판정법(ratio test)과 근판정법(root test)

미적분학에서 주어진 급수 $\sum_{n} a_{n}$의 수렴여부를 판단할 때, 비판정법(ratio test) 또는 근판정법(root test)을 흔히 사용한다. 즉, 주어진 수열의 비 $\abs{\frac{a_{n+1}}{a_{n}}}$ 또는 $n$제곱근 $\sqrt[n]{\abs{a_{n}}}$의 극한이 존재할 때, 이 극한의 크기에 따라서 주어진 급수의... Read more »

외적(cross product)과 오른손 법칙(right hand rule)

      Comments Off on 외적(cross product)과 오른손 법칙(right hand rule)

$\R^3$의 두 벡터 ${\bf u} = (u_1,\, u_2,\, u_3)$와 ${\bf v} = (v_1,\, v_2,\, v_3)$에 대하여 ${\bf u}$와 ${\bf v}$의 외적(cross product) ${\bf u} \times {\bf v}$를 다음과 같이 정의한다. \[ {\bf u} \times... Read more »

코시 응집 판정법(Cauchy condensation test)

      Comments Off on 코시 응집 판정법(Cauchy condensation test)

코시 응집 판정법(Cauchy condensation test)은 급수 수렴 여부를 판정하는 방법 중의 하나로써, 주어진 급수 $\sum a_n$가 양항 급수이고 급수의 각 항이 감소수열일 때, 사용할 수 있는 판정법이다.   정리. 코시 응집... Read more »

라비의 판정법(Raabe's test)을 포함한 다양한 급수의 수렴 판정법들

      Comments Off on 라비의 판정법(Raabe's test)을 포함한 다양한 급수의 수렴 판정법들

비 판정법은 급수의 수렴 여부를 판정하는 매우 강력한 도구 중 하나이다. 비 판정법이란, "주어진 급수 $\sum_n a_n$에 대하여 다음의 극한 \[ \lim_{n \to \infty} \abs{\frac{a_n}{a_{n+1}}} = L \] 에 대하여, $L>1$인... Read more »

산술-기하 평균(Arithmetic-geometric mean)에 대하여

      Comments Off on 산술-기하 평균(Arithmetic-geometric mean)에 대하여

산술-기하 평균(Arithmetic-geometric mean) 임의의 두 양의 실수 $x,\, y > 0$이 주어졌다고 하자. 그러면 $x$와 $y$의 산술평균(arithmetic mean)과 기하평균(geometric mean)을 각각 아래와 같이 정의한다. \[ A(x,\,y) = \frac{x + y}{2},... Read more »

두 점을 연결하는 최단경로의 곡선

      Comments Off on 두 점을 연결하는 최단경로의 곡선

이번 글에서는 언뜻 보면 너무나도 자명한 명제 "두 점을 연결하는 최단경로는 직선이다"를 수학적으로 증명해 볼 것이다. 이 명제는 보통 변분법(calculus of variation)이라는 미적분학의 한 분야에서 널리 쓰이는 오일러-라그랑주 방정식(Euler-Lagrange equation)을... Read more »

대학생들의 꿈의 정리

      Comments Off on 대학생들의 꿈의 정리

예전에 "초등학생들의 꿈"이라는 주제의 글을 퍼온적이 있다. http://jjycjnmath.tistory.com/307 위 글에서 "대학생들의 꿈"이라 불리는 정리를 간단하게 언급한 적이 있는데 이번 글에서는 이에 대해서 좀 더 자세히 설명하고자 한다.   대학교 1학년생의... Read more »

분수부분(fractional part) 함수가 포함된 적분

      Comments Off on 분수부분(fractional part) 함수가 포함된 적분

오일러-마스케로니 상수(Euler-Mascheroni constant)는 조화급수를 자연로그로 근사했을 때의 오차의 값을 나타내는 수학 상수이다. 즉, 아래와 같이 정의된다. \begin{align*} \gamma &= \lim_{n \to \infty} \left( \sum_{k=1}^{n} \frac{1}{k} - \ln n \right) \\[5pt]... Read more »

"원주율 $\pi$는 무리수이다."의 증명

      Comments Off on "원주율 $\pi$는 무리수이다."의 증명

정리. 원주율 $\pi$는 무리수(irrational)이다.   증명. 모순을 이끌어 내기 위해 원주율 $\pi$가 유리수(rational number)라고 가정해보자. 즉, 서로소인 두 정수 $a,\,b$가 존재하여 $e = \frac{a}{b}$ 라고 나타낼 수 있다고 가정해보자. 이제... Read more »