Category: Number Theorey

산술 도함수(arithmetic derivative)에 대하여 - 2. 유리수로의 확장

      Comments Off on 산술 도함수(arithmetic derivative)에 대하여 - 2. 유리수로의 확장

산술 도함수(arithmetic derivative) $(\cdot)' : \N \to \N_0$는 미분가능한 함수들에 대한 곱의 미분법(product rule)과 유사한 법칙을 만족하도록 양의 정수 위에서 정의된 다음 성질을 만족하는 함수이다. 임의의 소수 $p$에 대하여, $p'... Read more »

산술 도함수(arithmetic derivative)에 대하여 - 1. 정의와 기본 성질

      Comments Off on 산술 도함수(arithmetic derivative)에 대하여 - 1. 정의와 기본 성질

미분 가능한 함수 $f,\, g$에 대하여 곱의 미분법(product rule)은 다음과 같다. \[ (fg)' = f' \cdot g + f \cdot g' \] 함수가 아닌 양의 정수에 대해서도 위와 유사하게 곱의... Read more »

분할(partition)에 대한 오일러의 정리(Euler's theorem)

      Comments Off on 분할(partition)에 대한 오일러의 정리(Euler's theorem)

분할(partition)이란 주어진 양의 정수를 양의 정수들의 합으로 표현하는 방법을 연구하는 정수론 또는 조합론의 한 하위 분야이다. 양의 정수 $n$이 주어졌다고 하자. 그러면 $n$에 대한 분할수(partition number) $p(n)$은 $n$을 양의 정수들의... Read more »

르장드르의 정리(Legendre's theorem)와 쿠머의 정리(Kummer's theorem)

      Comments Off on 르장드르의 정리(Legendre's theorem)와 쿠머의 정리(Kummer's theorem)

소수 $p$가 주어졌다고 하자. $0$이 아닌 임의의 정수 $n$에 대하여, $n$의 $p$진 값매김($p$-adic valuation)은 $\nu_{p}(n)$을 $p^{\nu}$가 $n$를 나누게 하는 양의 정수 $\nu$ 중 가장 큰 수로 정의한다. 또한 $\nu_{p}(0) =... Read more »

군론(group theory)를 이용한 정수론의 정리 증명

      Comments Off on 군론(group theory)를 이용한 정수론의 정리 증명

정수론에서 합동(modular)의 개념을 정의하고 나서 바로 배우는 세 가지의 정리가 있다. 이들은 각각 페르마의 소정리(Fermat's little theorem), 오일러의 정리(Euler's theorem), 그리고 윌슨의 정리(Wilson's theorem)를 말하는데, 이 정리를 기반으로 합동식에 대한... Read more »

택시캡수(taxicab number)와 캡택시수(cabtaxi number)

      Comments Off on 택시캡수(taxicab number)와 캡택시수(cabtaxi number)

다음은 수학자 하디(G. H. Hardy)가 그의 제자 라마누잔(S. Ramanujan)의 병문안을 갔을 때의 일화이다. 1918년 2월, 입원 중이던 라마누잔의 병문안을 가시 위해서 하디가 탄 택시의 번호는 $1729$였다. 병원에 도착한 하디는 라마누잔에게... Read more »

짝수 완전수(perfect number)와 메르센 소수(Mersenne prime)

      Comments Off on 짝수 완전수(perfect number)와 메르센 소수(Mersenne prime)

완전수(perfect number) 정수론에서, 완전수(perfect number)란 자기 자신을 제외한 양의 약수를 모두 더했을 때 자기 자신이 되는 양의 정수를 말한다. 예를 들어 $6$의 양의 약수는 $1,\,2,\,3,\,6$이고, $1 + 2 + 3... Read more »

조화수(harmonic number)는 정수가 될 수 있을까?

      Comments Off on 조화수(harmonic number)는 정수가 될 수 있을까?

임의의 양의 정수 $n$에 대하여 $n$번째 조화수(harmonic number) $H_n$을 다음과 같이 정의하자. \[ H_n := \sum_{k=1}^{n} \frac{1}{k} \] 이 때, $n \to \infty$이면 수열 $(H_n)$이 양의 무한대로 발산함을 쉽게 증명할... Read more »

메르센 소수(Mersenne prime)의 목록

      Comments Off on 메르센 소수(Mersenne prime)의 목록

최근(2018년 1월 3일) GIMPS 프로젝트(Great Internet Mersenne Prime Search project)로부터 50번째 메르센 소수(Mersenne prime)가 발견되었다는 소식이 들려왔다. 정수 $n$에 대하여 $M_n := 2^n - 1$의 형태를 갖는 수를 메르센 수(Mersenne number)라... Read more »