소수의 역수의 합과 소수의 무한성
$\newcommand{\Prime}{\mathbb{P}}$조화급수(harmonic series)의 합, 즉 자연수의 역수의 합이 양의 무한대로 발산한다는 사실은 잘 알려져 있다. \[ \sum_{n=1}^{\infty} \frac{1}{n} = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \cdots = \infty \] 자연수의 역수의... Read more »
$\newcommand{\Prime}{\mathbb{P}}$조화급수(harmonic series)의 합, 즉 자연수의 역수의 합이 양의 무한대로 발산한다는 사실은 잘 알려져 있다. \[ \sum_{n=1}^{\infty} \frac{1}{n} = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \cdots = \infty \] 자연수의 역수의... Read more »
이번 글에서는 아래와 같은 형태의 문제에 대해서 생각해 볼 것이다. 목욕탕에 $n$명의 사람이 있다고 하자. 이 때, 몇 사람씩 그룹을 만들어 동그랗게 서서 서로가 앞사람의 등을 밀어주는 경우의 수 $D_n$은... Read more »
이번에 설명할 공식은 영국의 천문학자이자 수학자 에드몬드 핼리(Edmond Halley)가 발견한 자연로그를 거듭제곱근을 포함한 식의 극한으로 표현하는 방법이다. 정리. 임의의 $x>0$에 대하여 다음이 성립한다. \[ \ln{x} = \lim_{n \to \infty}... Read more »
탄젠트(tangent) 함수의 도함수(derivative)를 살짝만 변형해 보면 아래의 공식을 얻는다. \[ \begin{aligned} \frac{\mathrm{d}}{\mathrm{d}x}\, \tan(x) &= \sec^2(x) \\[5pt] &= 1 + \tan^2(x) \\[5pt] &= \left[ \sin^2(x) + \cos^2(x) \right] + \tan^2(x). \end{aligned}... Read more »
아래와 같은 조화급수(harmonic series)를 생각해 보자. \[ \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} + \cdots \] 이 급수가 양의 무한대로 발산한다는 사실은 잘 알려져 있다. 즉, 충분히... Read more »
위의 질문에 관한 간단하지만 신기한 증명이 있어서 올려본다. 정리. $s^t$가 유리수가 되게 하는 두 양의 무리수 $s$, $t$가 존재한다. 증명. 만약 $\sqrt{2}^{\sqrt{2}}$가 유리수라면 간단히 $s = t =... Read more »
$\newcommand{\ultimate}{\, \rlap{\rlap{\times}{\div}}{+} \,}$초등학교 시절부터 배워온 사칙연산이란 산수의 기본이 되는 덧셈(addition), 뺄셈(subtraction), 곱셈(multiplication), 나눗셈(division)의 네 가지 연산을 일컫는다. 이 네 가지 연산은 각각 $+$, $-$, $\times$, $\div$로 나타낼 수 있다. 또한 이... Read more »
정리. $\sqrt{2}$는 무리수(irrational)이다. 증명. 일단 $\sqrt{2}$가 유리수라고 가정해보자. 그러면 서로소인 정수 $a,\,b$가 존재하여 $\sqrt{2} = \frac{a}{b}$ 로 나타낼 수 있다. 이제 이 식의 양변을 제곱하면, $2 = \frac{a^2}{b^2}$이고 따라서... Read more »
수학 문제를 풀다 보면 가끔 다음과 같은 형태의 분수들의 대소를 비교해야 하는 경우가 있다. \[ (1) \ \frac{94}{99} \text{ 와 } \frac{101}{106} \qquad \text{또는} \qquad (2) \ \frac{99}{94} \text{ 와... Read more »
이번 글의 목적은, 게임 이론에서 폰 노이만(John Von Neumann, 1903-1957)의 최대최소 정리(Minimax Theorem)의 조건을 좀 더 일반화 한 사이온(Maurice Sion)의 최대최소 정리에 대해 알아보고 이를 KKM 사상(Knaster-Duratowski-Mazurkiewicz map)과 Ky Fan의... Read more »