Author Archives: Juyoung Jeong

위상수학이란 무엇일까?

      Comments Off on 위상수학이란 무엇일까?

위상수학은 무엇을 공부하는 학문일까? 오늘은 위상수학(topology)에 대한 일반적인 얘기로 시작해 보려고 한다. 우리가 흔히 학부 수준에서 접하는 위상수학은 사실 일반위상수학(general topology) 또는 점-집합 위상수학(point-set topology)으로 불리는 위상수학의 한 하위 분야로서,... Read more »

에르미트-아다마르 부등식(Hermite-Hadamard inequality)

      Comments Off on 에르미트-아다마르 부등식(Hermite-Hadamard inequality)

에르미트-아다마르 부등식(Hermite-Hadamard inequality)이란 볼록함수에 대해 성립하는 부등식 중 하나로써, 볼록함수(convex function) $f:[a,\,b] \to \R$에 대하여 $f$를 구간 $[a,\,b]$에서 적분한 적분값의 평균을 간단히 근사하는 방법을 제공한다.   이번 글에서는 에르미트-아다마르 부등식을... Read more »

소수의 역수의 합과 소수의 무한성

      Comments Off on 소수의 역수의 합과 소수의 무한성

$\newcommand{\Prime}{\mathbb{P}}$조화급수(harmonic series)의 합, 즉 자연수의 역수의 합이 양의 무한대로 발산한다는 사실은 잘 알려져 있다. \[ \sum_{n=1}^{\infty} \frac{1}{n} = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \cdots = \infty \] 자연수의 역수의... Read more »

교란순열(derangement)에 대하여

      Comments Off on 교란순열(derangement)에 대하여

이번 글에서는 아래와 같은 형태의 문제에 대해서 생각해 볼 것이다. 목욕탕에 $n$명의 사람이 있다고 하자. 이 때, 몇 사람씩 그룹을 만들어 동그랗게 서서 서로가 앞사람의 등을 밀어주는 경우의 수 $D_n$은... Read more »

자연로그의 거듭제곱근을 포함한 식의 극한을 이용한 표현

      Comments Off on 자연로그의 거듭제곱근을 포함한 식의 극한을 이용한 표현

이번에 설명할 공식은 영국의 천문학자이자 수학자 에드몬드 핼리(Edmond Halley)가 발견한 자연로그를 거듭제곱근을 포함한 식의 극한으로 표현하는 방법이다.   정리. 임의의 $x>0$에 대하여 다음이 성립한다. \[ \ln{x} = \lim_{n \to \infty}... Read more »

무리수의 무리수 제곱이 유리수가 될 수 있을까?

      Comments Off on 무리수의 무리수 제곱이 유리수가 될 수 있을까?

위의 질문에 관한 간단하지만 신기한 증명이 있어서 올려본다.   정리. $s^t$가 유리수가 되게 하는 두 양의 무리수 $s$, $t$가 존재한다.   증명. 만약 $\sqrt{2}^{\sqrt{2}}$가 유리수라면 간단히 $s = t =... Read more »

궁극의 이항연산(Ultimate binary operation)

      Comments Off on 궁극의 이항연산(Ultimate binary operation)

$\newcommand{\ultimate}{\, \rlap{\rlap{\times}{\div}}{+} \,}$초등학교 시절부터 배워온 사칙연산이란 산수의 기본이 되는 덧셈(addition), 뺄셈(subtraction), 곱셈(multiplication), 나눗셈(division)의 네 가지 연산을 일컫는다. 이 네 가지 연산은 각각 $+$, $-$, $\times$, $\div$로 나타낼 수 있다. 또한 이... Read more »