위상수학이란 무엇일까?
위상수학은 무엇을 공부하는 학문일까? 오늘은 위상수학(topology)에 대한 일반적인 얘기로 시작해 보려고 한다. 우리가 흔히 학부 수준에서 접하는 위상수학은 사실 일반위상수학(general topology) 또는 점-집합 위상수학(point-set topology)으로 불리는 위상수학의 한 하위 분야로서,... Read more »
위상수학은 무엇을 공부하는 학문일까? 오늘은 위상수학(topology)에 대한 일반적인 얘기로 시작해 보려고 한다. 우리가 흔히 학부 수준에서 접하는 위상수학은 사실 일반위상수학(general topology) 또는 점-집합 위상수학(point-set topology)으로 불리는 위상수학의 한 하위 분야로서,... Read more »
정리. 에르미트 항등식(Hermite's identity) 임의의 실수 $x \in \R$와 양의 정수 $n \in \N$에 대하여 다음이 성립한다. \[ \lfloor x \rfloor + \left\lfloor x + \frac{1}{n} \right\rfloor + \left\lfloor x... Read more »
에르미트-아다마르 부등식(Hermite-Hadamard inequality)이란 볼록함수에 대해 성립하는 부등식 중 하나로써, 볼록함수(convex function) $f:[a,\,b] \to \R$에 대하여 $f$를 구간 $[a,\,b]$에서 적분한 적분값의 평균을 간단히 근사하는 방법을 제공한다. 이번 글에서는 에르미트-아다마르 부등식을... Read more »
$\newcommand{\Prime}{\mathbb{P}}$조화급수(harmonic series)의 합, 즉 자연수의 역수의 합이 양의 무한대로 발산한다는 사실은 잘 알려져 있다. \[ \sum_{n=1}^{\infty} \frac{1}{n} = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \cdots = \infty \] 자연수의 역수의... Read more »
이번 글에서는 아래와 같은 형태의 문제에 대해서 생각해 볼 것이다. 목욕탕에 $n$명의 사람이 있다고 하자. 이 때, 몇 사람씩 그룹을 만들어 동그랗게 서서 서로가 앞사람의 등을 밀어주는 경우의 수 $D_n$은... Read more »
이번에 설명할 공식은 영국의 천문학자이자 수학자 에드몬드 핼리(Edmond Halley)가 발견한 자연로그를 거듭제곱근을 포함한 식의 극한으로 표현하는 방법이다. 정리. 임의의 $x>0$에 대하여 다음이 성립한다. \[ \ln{x} = \lim_{n \to \infty}... Read more »
탄젠트(tangent) 함수의 도함수(derivative)를 살짝만 변형해 보면 아래의 공식을 얻는다. \[ \begin{aligned} \frac{\mathrm{d}}{\mathrm{d}x}\, \tan(x) &= \sec^2(x) \\[5pt] &= 1 + \tan^2(x) \\[5pt] &= \left[ \sin^2(x) + \cos^2(x) \right] + \tan^2(x). \end{aligned}... Read more »
아래와 같은 조화급수(harmonic series)를 생각해 보자. \[ \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} + \cdots \] 이 급수가 양의 무한대로 발산한다는 사실은 잘 알려져 있다. 즉, 충분히... Read more »
위의 질문에 관한 간단하지만 신기한 증명이 있어서 올려본다. 정리. $s^t$가 유리수가 되게 하는 두 양의 무리수 $s$, $t$가 존재한다. 증명. 만약 $\sqrt{2}^{\sqrt{2}}$가 유리수라면 간단히 $s = t =... Read more »
$\newcommand{\ultimate}{\, \rlap{\rlap{\times}{\div}}{+} \,}$초등학교 시절부터 배워온 사칙연산이란 산수의 기본이 되는 덧셈(addition), 뺄셈(subtraction), 곱셈(multiplication), 나눗셈(division)의 네 가지 연산을 일컫는다. 이 네 가지 연산은 각각 $+$, $-$, $\times$, $\div$로 나타낼 수 있다. 또한 이... Read more »