유리수를 나열하는 다른 방법 - Calkin-Wilf 나무 그래프(tree graph)
유리수의 집합 $\Q$가 셀수 있는 집합임을 잘 알려져 있다. 이를 다시 표현하면 "모든 유리수를 단 한번씩 포함하는 수열"을 구성하는 것이 가능하다는 말이 된다. 이러한 수열을 구성하는 가장 간단한 방법은 아래와... Read more »
유리수의 집합 $\Q$가 셀수 있는 집합임을 잘 알려져 있다. 이를 다시 표현하면 "모든 유리수를 단 한번씩 포함하는 수열"을 구성하는 것이 가능하다는 말이 된다. 이러한 수열을 구성하는 가장 간단한 방법은 아래와... Read more »
브레치나이더 공식(Bretschneider's formula)은 임의의 사각형의 네 변의 길이와 마주보는 두 각의 크기를 이용하여 사각형의 넓이를 계산하는 공식을 뜻한다. 이 공식은 원에 내접한 사각형의 넓이를 구하는 브라마굽타 공식(Brahmagupta's formula)과 삼각형의 넓이를... Read more »
실함수 $f : I \subset \R \to I$가 주어졌다고 하자. 만약 임의의 $x \in I$에 대하여 \[ f(f(x)) = x \quad \text{or} \quad f(x) = f^{-1}(x) \] 가 성립하면, 함수... Read more »
다음의 계산을 보자. \[ \begin{matrix} & 2 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 2 \\ + &... Read more »
분할(partition)이란 주어진 양의 정수를 양의 정수들의 합으로 표현하는 방법을 연구하는 정수론 또는 조합론의 한 하위 분야이다. 양의 정수 $n$이 주어졌다고 하자. 그러면 $n$에 대한 분할수(partition number) $p(n)$은 $n$을 양의 정수들의... Read more »
일반적으로 $n$차원 벡터공간(vector space) $\R^n$의 표준기저(standard basis)를 다음과 같이 정의한다. \[ B_n = \{ e_1,\, e_2,\, \ldots,\, e_n \} \] 여기서 각각의 $i = 1,\, \ldots,\, n$에 대하여 $e_i$는 $i$번째... Read more »
아래과 같이 주어진 등차수열 \[ 1,\, 4,\, 7,\, \ldots,\, 1 + 3n,\, \ldots \] 의 경우는 등비수열인 부분수열 $(4^n)$을 가짐을 간단히 확인할 수 있다. (물론 이 외에도 무한히 많은 등비수열인... Read more »
정사각행렬(square matrix)sub> $A$에 대하여 행렬의 거듭제곱을 정의할 수 있다. 예를 들어 $3 \times 3$ 행렬 $A$가 \[ A = \left[ \begin{array}{rrr} 1 & 1 & -1 \\ 3 & -1... Read more »
$n \times n$ 정사각행렬 $A$가 주어졌다고 하자. 만약 적당한 양의 정수 $k$가 존재하여 $A^k = 0$이 성립하면, $A$를 멱영행렬(nilpotent matrix)라 정의한다. 멱영행렬의 고윳값(eigenvalue)를 생각해 보면 재미있는 사실을 발견할 수 있는데,... Read more »
삼각함수(trigonometric function)와 쌍곡함수(hyperbolic function)는 서로 밀접한 관계가 있는데, 이는 복소수를 이용하여 다음과 같이 나타낼 수 있다. \[ \begin{align*} \sin(iz) &= i\sinh(z) & \sinh(iz) &= i\sin(z) \\[5px] \cos(iz) &= \cosh(z) &... Read more »