분할(partition)에 대한 오일러의 정리(Euler's theorem)
분할(partition)이란 주어진 양의 정수를 양의 정수들의 합으로 표현하는 방법을 연구하는 정수론 또는 조합론의 한 하위 분야이다. 양의 정수 $n$이 주어졌다고 하자. 그러면 $n$에 대한 분할수(partition number) $p(n)$은 $n$을 양의 정수들의... Read more »
분할(partition)이란 주어진 양의 정수를 양의 정수들의 합으로 표현하는 방법을 연구하는 정수론 또는 조합론의 한 하위 분야이다. 양의 정수 $n$이 주어졌다고 하자. 그러면 $n$에 대한 분할수(partition number) $p(n)$은 $n$을 양의 정수들의... Read more »
일반적으로 $n$차원 벡터공간(vector space) $\R^n$의 표준기저(standard basis)를 다음과 같이 정의한다. \[ B_n = \{ e_1,\, e_2,\, \ldots,\, e_n \} \] 여기서 각각의 $i = 1,\, \ldots,\, n$에 대하여 $e_i$는 $i$번째... Read more »
정사각행렬(square matrix)sub> $A$에 대하여 행렬의 거듭제곱을 정의할 수 있다. 예를 들어 $3 \times 3$ 행렬 $A$가 \[ A = \left[ \begin{array}{rrr} 1 & 1 & -1 \\ 3 & -1... Read more »
$n \times n$ 정사각행렬 $A$가 주어졌다고 하자. 만약 적당한 양의 정수 $k$가 존재하여 $A^k = 0$이 성립하면, $A$를 멱영행렬(nilpotent matrix)라 정의한다. 멱영행렬의 고윳값(eigenvalue)를 생각해 보면 재미있는 사실을 발견할 수 있는데,... Read more »
소수 $p$가 주어졌다고 하자. $0$이 아닌 임의의 정수 $n$에 대하여, $n$의 $p$진 값매김($p$-adic valuation)은 $\nu_{p}(n)$을 $p^{\nu}$가 $n$를 나누게 하는 양의 정수 $\nu$ 중 가장 큰 수로 정의한다. 또한 $\nu_{p}(0) =... Read more »
정수론에서 합동(modular)의 개념을 정의하고 나서 바로 배우는 세 가지의 정리가 있다. 이들은 각각 페르마의 소정리(Fermat's little theorem), 오일러의 정리(Euler's theorem), 그리고 윌슨의 정리(Wilson's theorem)를 말하는데, 이 정리를 기반으로 합동식에 대한... Read more »
다음은 수학자 하디(G. H. Hardy)가 그의 제자 라마누잔(S. Ramanujan)의 병문안을 갔을 때의 일화이다. 1918년 2월, 입원 중이던 라마누잔의 병문안을 가시 위해서 하디가 탄 택시의 번호는 $1729$였다. 병원에 도착한 하디는 라마누잔에게... Read more »
완전수(perfect number) 정수론에서, 완전수(perfect number)란 자기 자신을 제외한 양의 약수를 모두 더했을 때 자기 자신이 되는 양의 정수를 말한다. 예를 들어 $6$의 양의 약수는 $1,\,2,\,3,\,6$이고, $1 + 2 + 3... Read more »
반대칭행렬(skew-symmetric matrix)이란 전치행렬(transpose)이 덧셈의 역원과 같은 행렬이다. 즉, $n \times n$ 실행렬 $A$에 대하여 $A^{\T}= -A$가 성립할 때, $A$를 반대칭행렬이라 한다. 따라서 임의의 반대칭행렬 $A$에 대하여 $a_{ij}$를 행렬 $A$의 $(i,\,j)$-원소라... Read more »
다항식의 나눗셈 정리(polynomial division theorem)에 의하면 다음 사실이 성립한다: 서로 다른 두 다항식 $f$, $g$에 대하여 아래 다항식을 만족하는 두 다항식 $q$와 $r$이 유일하게 존재한다. \[ f(x) = g(x)q(x) +... Read more »