Category: Algebra

멱영행렬(nilpotent matrix)과 고윳값(eigenvalue) 사이의 관계

      Comments Off on 멱영행렬(nilpotent matrix)과 고윳값(eigenvalue) 사이의 관계

$n \times n$ 정사각행렬 $A$가 주어졌다고 하자. 만약 적당한 양의 정수 $k$가 존재하여 $A^k = 0$이 성립하면, $A$를 멱영행렬(nilpotent matrix)라 정의한다. 멱영행렬의 고윳값(eigenvalue)를 생각해 보면 재미있는 사실을 발견할 수 있는데,... Read more »

르장드르의 정리(Legendre's theorem)와 쿠머의 정리(Kummer's theorem)

      Comments Off on 르장드르의 정리(Legendre's theorem)와 쿠머의 정리(Kummer's theorem)

소수 $p$가 주어졌다고 하자. $0$이 아닌 임의의 정수 $n$에 대하여, $n$의 $p$진 값매김($p$-adic valuation)은 $\nu_{p}(n)$을 $p^{\nu}$가 $n$를 나누게 하는 양의 정수 $\nu$ 중 가장 큰 수로 정의한다. 또한 $\nu_{p}(0) =... Read more »

군론(group theory)를 이용한 정수론의 정리 증명

      Comments Off on 군론(group theory)를 이용한 정수론의 정리 증명

정수론에서 합동(modular)의 개념을 정의하고 나서 바로 배우는 세 가지의 정리가 있다. 이들은 각각 페르마의 소정리(Fermat's little theorem), 오일러의 정리(Euler's theorem), 그리고 윌슨의 정리(Wilson's theorem)를 말하는데, 이 정리를 기반으로 합동식에 대한... Read more »

택시캡수(taxicab number)와 캡택시수(cabtaxi number)

      Comments Off on 택시캡수(taxicab number)와 캡택시수(cabtaxi number)

다음은 수학자 하디(G. H. Hardy)가 그의 제자 라마누잔(S. Ramanujan)의 병문안을 갔을 때의 일화이다. 1918년 2월, 입원 중이던 라마누잔의 병문안을 가시 위해서 하디가 탄 택시의 번호는 $1729$였다. 병원에 도착한 하디는 라마누잔에게... Read more »

짝수 완전수(perfect number)와 메르센 소수(Mersenne prime)

      Comments Off on 짝수 완전수(perfect number)와 메르센 소수(Mersenne prime)

완전수(perfect number) 정수론에서, 완전수(perfect number)란 자기 자신을 제외한 양의 약수를 모두 더했을 때 자기 자신이 되는 양의 정수를 말한다. 예를 들어 $6$의 양의 약수는 $1,\,2,\,3,\,6$이고, $1 + 2 + 3... Read more »

반대칭행렬(skew-symmetric matrix)의 행렬식(determinant)

      Comments Off on 반대칭행렬(skew-symmetric matrix)의 행렬식(determinant)

반대칭행렬(skew-symmetric matrix)이란 전치행렬(transpose)이 덧셈의 역원과 같은 행렬이다. 즉, $n \times n$ 실행렬 $A$에 대하여 $A^{\T}= -A$가 성립할 때, $A$를 반대칭행렬이라 한다. 따라서 임의의 반대칭행렬 $A$에 대하여 $a_{ij}$를 행렬 $A$의 $(i,\,j)$-원소라... Read more »

일반화된 다항식의 나머지 정리(generalized polynomial remainder theorem)

      Comments Off on 일반화된 다항식의 나머지 정리(generalized polynomial remainder theorem)

다항식의 나눗셈 정리(polynomial division theorem)에 의하면 다음 사실이 성립한다: 서로 다른 두 다항식 $f$, $g$에 대하여 아래 다항식을 만족하는 두 다항식 $q$와 $r$이 유일하게 존재한다. \[ f(x) = g(x)q(x) +... Read more »

오름차순 수(ascending number)와 내림차순 수(descending number) 사이의 관계

      Comments Off on 오름차순 수(ascending number)와 내림차순 수(descending number) 사이의 관계

$1$부터 $9$까지의 모든 수를 내림차순(descending order)으로 적은 수 $987654321$과 오름차순(ascending order)으로 적은 수 $123456789$를 비교해 보면, 처음 수가 나중 수의 대략 $8$배 가량 된다는 사실을 확인할 수 있다. 이 관계를... Read more »

'$2$의 거듭제곱근은 유리수가 아니다'에 대한 증명

      Comments Off on '$2$의 거듭제곱근은 유리수가 아니다'에 대한 증명

예전에 '소수의 제곱근은 유리수가 아니다'라는 명제에 대한 두가지 증명을 올린 적이 있다. $ $ '소수의 제곱근은 유리수가 아니다'에 대한 증명 '소수의 제곱근은 유리수가 아니다'에 대한 또다른 증명 $ $ 이번에는... Read more »