오름차순 수(ascending number)와 내림차순 수(descending number) 사이의 관계
$1$부터 $9$까지의 모든 수를 내림차순(descending order)으로 적은 수 $987654321$과 오름차순(ascending order)으로 적은 수 $123456789$를 비교해 보면, 처음 수가 나중 수의 대략 $8$배 가량 된다는 사실을 확인할 수 있다. 이 관계를... Read more »
$1$부터 $9$까지의 모든 수를 내림차순(descending order)으로 적은 수 $987654321$과 오름차순(ascending order)으로 적은 수 $123456789$를 비교해 보면, 처음 수가 나중 수의 대략 $8$배 가량 된다는 사실을 확인할 수 있다. 이 관계를... Read more »
예전에 '소수의 제곱근은 유리수가 아니다'라는 명제에 대한 두가지 증명을 올린 적이 있다. $ $ '소수의 제곱근은 유리수가 아니다'에 대한 증명 '소수의 제곱근은 유리수가 아니다'에 대한 또다른 증명 $ $ 이번에는... Read more »
임의의 양의 정수 $n \in \N$에 대하여, $n$의 계승(factorial)을 다음과 같이 정의한다. \[ n! := \prod_{k=1}^{n} k = n (n-1) (n-2) \cdots 3 \cdot 2 \cdot 1 \] $n =... Read more »
임의의 양의 정수 $n$에 대하여 $n$번째 조화수(harmonic number) $H_n$을 다음과 같이 정의하자. \[ H_n := \sum_{k=1}^{n} \frac{1}{k} \] 이 때, $n \to \infty$이면 수열 $(H_n)$이 양의 무한대로 발산함을 쉽게 증명할... Read more »
최근(2018년 1월 3일) GIMPS 프로젝트(Great Internet Mersenne Prime Search project)로부터 50번째 메르센 소수(Mersenne prime)가 발견되었다는 소식이 들려왔다. 정수 $n$에 대하여 $M_n := 2^n - 1$의 형태를 갖는 수를 메르센 수(Mersenne number)라... Read more »
1960년 시어핀스키(Waclaw Sierpinski)는 모든 양의 정수 $n$에 대하여, $k 2^n +1$가 합성수가 되게 하는 홀수 양의 정수 $k$의 갯수는 무한함을 증명하였다. 그의 업적을 기리기 위해, 위 성질을 만족하는 홀수 양의... Read more »
좌표평면에서 격자점(lattice point)이란 좌표 $(x,\, y)$가 모두 정수인 점을 뜻한다. 이제 양의 정수 $n$에 대하여 정확하게 $n$개의 격자점을 지나는 원을 생각해 보자. 우선 $n=1$인 경우 간단히 $(3x-1)^2 + 9y^2 =... Read more »
$\R^3$의 두 벡터 ${\bf u} = (u_1,\, u_2,\, u_3)$와 ${\bf v} = (v_1,\, v_2,\, v_3)$에 대하여 ${\bf u}$와 ${\bf v}$의 외적(cross product) ${\bf u} \times {\bf v}$를 다음과 같이 정의한다. \[ {\bf u} \times... Read more »
어느날 스코틀랜드의 수학자 듀들리 랭퍼드(C. Dudley Langford)는 그의 아들이 컬러블록을 가지고 놀고 있는 것을 보고 있었다. 그러던 중 랭퍼드는 그의 아들이 배열한 세쌍의 컬러블록 (빨강, 파랑, 초록)이 두개의 빨간 블록은... Read more »
피보나치 수열(Fibonacci sequence) $F_n$은 다음과 같이 귀납적으로 정의되는 수열이다. \[ F_0 = 0, \quad F_1 = 1, \quad F_{n} = F_{n-1} + F_{n-2}\; (n \geq 2). \] 이제 피보나치 수열 $F_n$에... Read more »