Category: Applied Mathematics

도함수와 원시함수가 같은 함수

      Comments Off on 도함수와 원시함수가 같은 함수

도함수와 원시함수가 같은 함수 지수함수 $f(x) = e^x$는 굉장히 특별한 성질을 가지고 있는 함수이다. 이 함수를 미분하면 $f'(x) = e^x$이다. 또한 이 함수를 적분하면, 즉, 이 함수의 원시함수(primitive function)를 $F(x)$를 ... Read More

시커만 주사위(Sicherman dice)

      Comments Off on 시커만 주사위(Sicherman dice)

두개의 일반적인 주사위가 있다고 하자. 일반적인 주사위의 각 면에는 점이 1개부터 6개까지 쓰여있으므로 이 일반적인 주사위를 $(1,\, 2,\, 3,\, 4,\, 5,\, 6)$으로 나타내도록 하자. 이제 두 주사위를 각각 굴려서 나온 ... Read More

최대최소 정리 - 3. 사이온의 최대최소 정리(Sion's Minimax Theorem)

      Comments Off on 최대최소 정리 - 3. 사이온의 최대최소 정리(Sion's Minimax Theorem)

이번 글의 목적은, 게임 이론에서 폰 노이만(John Von Neumann, 1903-1957)의 최대최소 정리(Minimax Theorem)의 조건을 좀 더 일반화 한 사이온(Maurice Sion)의 최대최소 정리에 대해 알아보고 이를 KKM 사상(Knaster-Duratowski-Mazurkiewicz map)과 Ky Fan의 ... Read More

최대최소 정리 - 2. KKM 사상과 Ky Fan의 정리

      Comments Off on 최대최소 정리 - 2. KKM 사상과 Ky Fan의 정리

이번 글의 목적은, 게임 이론에서 폰 노이만(John Von Neumann, 1903-1957)의 최대최소 정리(Minimax Theorem)의 조건을 좀 더 일반화 한 사이온(Maurice Sion)의 최대최소 정리에 대해 알아보고 이를 KKM 사상(Knaster-Duratowski-Mazurkiewicz map)과 Ky Fan의 ... Read More

최대최소 정리 - 1. 폰 노이만의 최대최소 정리(Von Neumann's Minimax Theorem)

      Comments Off on 최대최소 정리 - 1. 폰 노이만의 최대최소 정리(Von Neumann's Minimax Theorem)

이번 글의 목적은, 게임 이론에서 폰 노이만(John Von Neumann, 1903-1957)의 최대최소 정리(Minimax Theorem)의 조건을 좀 더 일반화 한 사이온(Maurice Sion)의 최대최소 정리에 대해 알아보고 이를 KKM 사상(Knaster-Duratowski-Mazurkiewicz map)과 Ky Fan의 ... Read More

극값 정리의 조건 완화 - 2. 연속성(Continuity)

      Comments Off on 극값 정리의 조건 완화 - 2. 연속성(Continuity)

저번 글에서는 극값 정리의 조건 중 제약집합(constraint set)의 옹골성(compactness)를 완화하는 방법에 대해서 살펴보았다. 이번 글에서는 극값 정리의 조건 중 목적함수(objective function)의 연속성(continuity)를 완화하는 방법에 대해서 살펴보고자 한다.   목적함수 $f$의 ... Read More

극값 정리의 조건 완화 - 1. 옹골성(Compactness)

      Comments Off on 극값 정리의 조건 완화 - 1. 옹골성(Compactness)

실해석학에서 극값 정리(Extreme Value Theorem) 또는 최대-최소 정리(Max-Min Theorem)이라고 불리는 정리는 아래와 같다.   정리. 극값 정리 또는 최대-최소 정리 집합 $E \subseteq \R^n$를 옹골집합(compact set)이라 하고 함수 $f : ... Read More

원주율의 계산 - 마친의 공식 (Machin's Formula)

      Comments Off on 원주율의 계산 - 마친의 공식 (Machin's Formula)

원주율 파이는 무한소수이기 때문에 컴퓨터를 이용하여 그 값을 근사적으로 구해야만 한다. 특히, 원주율의 계산은 슈퍼컴퓨터의 연산 성능을 측정하는 기준의 하나로 쓰이기도 한다. 원주율 값은 보통 무한급수의 합으로 주어지는데, 이번 포스트에서는 ... Read More

지수함수(exponential function)를 정의하는 여러가지 방법들

      Comments Off on 지수함수(exponential function)를 정의하는 여러가지 방법들

지수함수(exponential function)를 정의하는 방법은 여러가지가 있다. 이 중에서 가장 대표적으로 쓰이는 몇 가지를 나열해 보면 다음과 같다.   정의. 지수함수(exponential function) 지수함수 $\exp(x)$는 아래중 하나의 방법으로 정의한다. $\exp(x)$를 아래와 같이 ... Read More