반추이적 주사위(nontransitive dice)
$1$부터 $6$까지의 숫자가 각 면에 적혀있는 일반적인 정육면체 모양 주사위 두 개 $A$와 $B$가 주어졌다고 하자. 이제 주사위 $A$가 주사위 $B$를 이길 확률, 질 확률, 비길 확률 (즉, 주사위 $A$와... Read more »
$1$부터 $6$까지의 숫자가 각 면에 적혀있는 일반적인 정육면체 모양 주사위 두 개 $A$와 $B$가 주어졌다고 하자. 이제 주사위 $A$가 주사위 $B$를 이길 확률, 질 확률, 비길 확률 (즉, 주사위 $A$와... Read more »
도함수와 원시함수가 같은 함수 지수함수 $f(x) = e^x$는 굉장히 특별한 성질을 가지고 있는 함수이다. 이 함수를 미분하면 $f'(x) = e^x$이다. 또한 이 함수를 적분하면, 즉, 이 함수의 원시함수(primitive function)를 $F(x)$를... Read more »
두개의 일반적인 주사위가 있다고 하자. 일반적인 주사위의 각 면에는 점이 1개부터 6개까지 쓰여있으므로 이 일반적인 주사위를 $(1,\, 2,\, 3,\, 4,\, 5,\, 6)$으로 나타내도록 하자. 이제 두 주사위를 각각 굴려서 나온... Read more »
이번 글의 목적은, 게임 이론에서 폰 노이만(John Von Neumann, 1903-1957)의 최대최소 정리(Minimax Theorem)의 조건을 좀 더 일반화 한 사이온(Maurice Sion)의 최대최소 정리에 대해 알아보고 이를 KKM 사상(Knaster-Duratowski-Mazurkiewicz map)과 Ky Fan의... Read more »
이번 글의 목적은, 게임 이론에서 폰 노이만(John Von Neumann, 1903-1957)의 최대최소 정리(Minimax Theorem)의 조건을 좀 더 일반화 한 사이온(Maurice Sion)의 최대최소 정리에 대해 알아보고 이를 KKM 사상(Knaster-Duratowski-Mazurkiewicz map)과 Ky Fan의... Read more »
이번 글의 목적은, 게임 이론에서 폰 노이만(John Von Neumann, 1903-1957)의 최대최소 정리(Minimax Theorem)의 조건을 좀 더 일반화 한 사이온(Maurice Sion)의 최대최소 정리에 대해 알아보고 이를 KKM 사상(Knaster-Duratowski-Mazurkiewicz map)과 Ky Fan의... Read more »
저번 글에서는 극값 정리의 조건 중 제약집합(constraint set)의 옹골성(compactness)를 완화하는 방법에 대해서 살펴보았다. 이번 글에서는 극값 정리의 조건 중 목적함수(objective function)의 연속성(continuity)를 완화하는 방법에 대해서 살펴보고자 한다. 목적함수 $f$의... Read more »
실해석학에서 극값 정리(Extreme Value Theorem) 또는 최대-최소 정리(Max-Min Theorem)이라고 불리는 정리는 아래와 같다. 정리. 극값 정리 또는 최대-최소 정리 집합 $E \subseteq \R^n$를 옹골집합(compact set)이라 하고 함수 $f :... Read more »
Projection on Closed Convex Sets $(H,\, \ip{\cdot}{\cdot})$ 를 Hilbert space라 하고 $C \in H$가 closed convex set이라 하자. (집합 $C \in H$가 임의의 $x,\, y \in C$와 $t \in [0,\,1]$에... Read more »
원주율 파이는 무한소수이기 때문에 컴퓨터를 이용하여 그 값을 근사적으로 구해야만 한다. 특히, 원주율의 계산은 슈퍼컴퓨터의 연산 성능을 측정하는 기준의 하나로 쓰이기도 한다. 원주율 값은 보통 무한급수의 합으로 주어지는데, 이번 포스트에서는... Read more »