Category: High School Math

특수한 형태의 무한급수와 벨수(Bell number), 감마함수(gamma function)와의 연관성

      Comments Off on 특수한 형태의 무한급수와 벨수(Bell number), 감마함수(gamma function)와의 연관성

이전 글에서 특수한 형태의 무한급수 (다항함수를 지수함수 또는 계승함수로 나눈 꼴의 무한급수) 의 값을 계산하는 일반적인 방법에 대하여 알아보았다. 다항함수/지수함수 형태로 이루어진 무한급수의 값 다항함수/계승함수 형태로 이루어진 무한급수의 값 위... Read more »

다항함수/계승함수 형태로 이루어진 무한급수의 값

      Comments Off on 다항함수/계승함수 형태로 이루어진 무한급수의 값

이전 글 다항함수/지수함수 형태로 이루어진 된 무한급수의 값 에서 다항함수를 지수함수로 나눈 형태의 무한급수의 값을 구하는 일반적인 방법에 대하여 생각해 보았다. 이번에는 다음과 같이 \[ \sum_{n=0}^{\infty} \frac{n^2}{n!}, \quad \sum_{n=0}^{\infty} \frac{n^3... Read more »

다항함수/지수함수 형태로 이루어진 무한급수의 값

      Comments Off on 다항함수/지수함수 형태로 이루어진 무한급수의 값

이번 글에서는 다음과 같이 다항함수를 지수함수로 나눈 형태의 무한급수들 \[ \sum_{n=0}^{\infty} \frac{n}{2^n}, \quad \sum_{n=0}^{\infty} \frac{n^2-3n+2}{4^{n+1}}, \quad \sum_{n=1}^{\infty} \frac{(n-2)^3}{(-3)^n} ,\, \ldots \] 의 값을 구하는 일반적인 방법에 대하여 알아볼 것이다. 이를... Read more »

피보나치 수열(Fibonacci sequence)과 역코탄젠트(arccotangent) 함수

      Comments Off on 피보나치 수열(Fibonacci sequence)과 역코탄젠트(arccotangent) 함수

다음과 같이 귀납적으로 정의된 수열 \[ F_{0} = 0,\, F_{1} = 1,\, F_{n+1} = F_{n} + F_{n-1} \, (n \geq 1) \] 을 피보나치 수열(Fibonacci sequence)이라 한다. 이번 글에서는 카시니... Read more »

삼각함수의 $n$배각공식과 체비쇼프 방법(Chebyshev method)

      Comments Off on 삼각함수의 $n$배각공식과 체비쇼프 방법(Chebyshev method)

지난 글에서는 드 무아브르 공식(de Moivre's formula)를 이용하여 사인 함수과 코사인 함수의 $n$배각 공식을 간단히 얻는 방법을 살펴 보았다. 이번 글에서는 코사인 함수, 사인 함수, 탄젠트 함수의 $n$배각공식에 재귀적으로 얻는... Read more »

삼각함수의 $n$배각공식과 드 무아브르 공식(de Moivre's formula)

      Comments Off on 삼각함수의 $n$배각공식과 드 무아브르 공식(de Moivre's formula)

삼각함수에 대한 모든 항등식은 아래 삼각함수의 덧셈정리로 부터 증명할 수 있다. \[ \begin{align*} \sin(x \pm y) &= \sin(x) \cos(y) \pm \cos(x) \sin(y) \\[5px] \cos(x \pm y) &= \cos(x) \cos(y) \mp... Read more »

자연상수를 근사하는 유사 완전 온자리 수(pseudo perfect pandigital number)

      Comments Off on 자연상수를 근사하는 유사 완전 온자리 수(pseudo perfect pandigital number)

온자리 수(pandigital number)란 $0$ 부터 $9$ 까지의 모든 숫자를 적어도 한번씩 사용하여 만든 $10$자리 이상의 정수를 말한다. 특히 $0$부터 $9$ 까지의 모든 숫자를 단 한번씩만 사용하여 만든 $10$자리 정수를 완전... Read more »