이전 글 다항함수/지수함수 형태로 이루어진 된 무한급수의 값 에서 다항함수를 지수함수로 나눈 형태의 무한급수의 값을 구하는 일반적인 방법에 대하여 생각해 보았다. 이번에는 다음과 같이 \[ \sum_{n=0}^{\infty} \frac{n^2}{n!}, \quad \sum_{n=0}^{\infty} \frac{n^3... Read more »
이번 글에서는 다음과 같이 다항함수를 지수함수로 나눈 형태의 무한급수들 \[ \sum_{n=0}^{\infty} \frac{n}{2^n}, \quad \sum_{n=0}^{\infty} \frac{n^2-3n+2}{4^{n+1}}, \quad \sum_{n=1}^{\infty} \frac{(n-2)^3}{(-3)^n} ,\, \ldots \] 의 값을 구하는 일반적인 방법에 대하여 알아볼 것이다. 이를... Read more »
아래의 정리는 $n$개의 실근을 가지는 실계수 다항식 $p(x)$의 해의 위치를 근사할 수 있는 정리이다. 예를 들어 다음의 3차 방정식을 생각해 보자. \[ x^3 - 2x^2 - x + 2 =... Read more »
먼저 환(ring)의 정의부터 시작해 보도록 하자. 정의 1.1 환(ring)이란 아래의 공리들을 만족하는 이항연산(binary operation)이 정의 된 집합 $R$을 말한다: $R$은 연산 $+$에 대하여 가환군(Abelian group)을 이룬다. 즉, $R$은 연산... Read more »