Category: Arithmetic

오름차순 수(ascending number)와 내림차순 수(descending number) 사이의 관계

      Comments Off on 오름차순 수(ascending number)와 내림차순 수(descending number) 사이의 관계

$1$부터 $9$까지의 모든 수를 내림차순(descending order)으로 적은 수 $987654321$과 오름차순(ascending order)으로 적은 수 $123456789$를 비교해 보면, 처음 수가 나중 수의 대략 $8$배 가량 된다는 사실을 확인할 수 있다. 이 관계를 ... Read More

'$2$의 거듭제곱근은 유리수가 아니다'에 대한 증명

      Comments Off on '$2$의 거듭제곱근은 유리수가 아니다'에 대한 증명

예전에 '소수의 제곱근은 유리수가 아니다'라는 명제에 대한 두가지 증명을 올린 적이 있다. $ $ '소수의 제곱근은 유리수가 아니다'에 대한 증명 '소수의 제곱근은 유리수가 아니다'에 대한 또다른 증명 $ $ 이번에는 ... Read More

평균(mean)에 대하여 - 3. 더욱 일반화된 평균

      Comments Off on 평균(mean)에 대하여 - 3. 더욱 일반화된 평균

우리는 다양한 산술평균(arithmetic mean), 기하평균(geometric mean), 조화평균(harmonic mean), 이차평균(quadratic mean)등의 다양한 평균들의 정의와 이를 아우르는 멱평균(power mean)의 개념에 대해 알아보고, 젠센부등식(Jensen's inequality)을 이용하여 산술-기하-조화평균 부등식을 증명해 보았다. 이번시간에는 멱평균을 더욱 ... Read More

평균(mean)에 대하여 - 2. 젠센부등식과 이를 이용한 증명들

      Comments Off on 평균(mean)에 대하여 - 2. 젠센부등식과 이를 이용한 증명들

저번 포스트에서 다양한 방법으로 정의되는 평균들에 대한 소개와, 이를 한꺼번에 아우르는 멱평균(power mean)에 대해 살펴보았다. 또한 산술-기하-조화평균 부등식이라 불리우는 산술평균, 기하평균, 조화평균 사이에 성립하는 절대부등식을 소개하였다. \[\frac{\sum_{i=1}^{n}a_{i}}{n} \leq \sqrt[n]{\prod_{i=1}^{n}a_{i}} \leq ... Read More

평균(mean)에 대하여 - 1. 다양한 평균의 정의

      Comments Off on 평균(mean)에 대하여 - 1. 다양한 평균의 정의

중고등학교 과정에서 평균을 구하는 다양한 방법에 대하여 배운다. 이 중 산술평균(arithmetic mean), 기하평균(geometric mean), 그리고 조화평균(harmonic mean)이 가장 흔히 접하고 또한 응용도 많이 되는 평균들인데, 이들 평균들 사이에 절대부등식이 성립한다. ... Read More

'소수의 제곱근은 유리수가 아니다'의 증명

      Comments Off on '소수의 제곱근은 유리수가 아니다'의 증명

$\sqrt{2}$가 무리수임은 매우 잘 알려져 있고, 그 증명 또한 매우 간단하다. 또한 이 증명법을 조금만 수정하면 임의의 소수 $p$에 대해서도 $\sqrt{p}$가 무리수임을 간단히 증명할 수 있다. $ $ 이번 글에서는 ... Read More