기댓값(expectation)을 이용한 재밌는 증명
이번에 증명하고자 하는 정리는, 정리의 내용 자체만으로도 흥미로울 뿐만 아니라, 정리를 증명하는 방법 또한 매우 신기해서 이곳에 그 내용을 정리해서 올려보고자 한다. 이 정리는 Quadratic Semidefinite Programming 분야에서 S-lemma라고 불리는 정리를 증명할... Read more »
이번에 증명하고자 하는 정리는, 정리의 내용 자체만으로도 흥미로울 뿐만 아니라, 정리를 증명하는 방법 또한 매우 신기해서 이곳에 그 내용을 정리해서 올려보고자 한다. 이 정리는 Quadratic Semidefinite Programming 분야에서 S-lemma라고 불리는 정리를 증명할... Read more »
체(field) $\mathbb{F}$ 위에서의 벡터공간(real vector space) $(\mathcal{V},\, +,\, \cdot\,)$이란 집합 $\mathcal{V}$와 함께 벡터합(vector addition)이라 불리는 연산 $+ : \mathcal{V} \times \mathcal{V} \to \mathcal{V}$ by $(x,\,y) \mapsto x+y$와 스칼라곱(scalar multiplication)이라 불리는... Read more »
실벡터공간(real vector space)이란, 주어진 공간의 (벡터(vector)라고 불리는) 임의의 원소들의 합과 임의의 원소의 실수배에 대하여 닫혀있는 공간을 말한다. 다시 말해 마음대로 두 원소를 더하거나 주어진 원소를 임의의 실수배 만큼 자유롭게 늘이거나... Read more »
우리는 다양한 산술평균(arithmetic mean), 기하평균(geometric mean), 조화평균(harmonic mean), 이차평균(quadratic mean)등의 다양한 평균들의 정의와 이를 아우르는 멱평균(power mean)의 개념에 대해 알아보고, 젠센부등식(Jensen's inequality)을 이용하여 산술-기하-조화평균 부등식을 증명해 보았다. 이번시간에는 멱평균을 더욱... Read more »
저번 포스트에서 다양한 방법으로 정의되는 평균들에 대한 소개와, 이를 한꺼번에 아우르는 멱평균(power mean)에 대해 살펴보았다. 또한 산술-기하-조화평균 부등식이라 불리우는 산술평균, 기하평균, 조화평균 사이에 성립하는 절대부등식을 소개하였다. \[ \frac{\sum_{i=1}^{n}a_{i}}{n} \leq \sqrt[n]{\prod_{i=1}^{n}a_{i}}... Read more »
중고등학교 과정에서 평균을 구하는 다양한 방법에 대하여 배운다. 이 중 산술평균(arithmetic mean), 기하평균(geometric mean), 그리고 조화평균(harmonic mean)이 가장 흔히 접하고 또한 응용도 많이 되는 평균들인데, 이들 평균들 사이에 절대부등식이 성립한다.... Read more »
$\sqrt{2}$가 무리수임은 매우 잘 알려져 있고, 그 증명 또한 매우 간단하다. 또한 이 증명법을 조금만 수정하면 임의의 소수 $p$에 대해서도 $\sqrt{p}$가 무리수임을 간단히 증명할 수 있다. $ $ 이번 글에서는... Read more »