Category: Combinatorics

특수한 형태의 무한급수와 벨수(Bell number), 감마함수(gamma function)와의 연관성

      Comments Off on 특수한 형태의 무한급수와 벨수(Bell number), 감마함수(gamma function)와의 연관성

이전 글에서 특수한 형태의 무한급수 (다항함수를 지수함수 또는 계승함수로 나눈 꼴의 무한급수) 의 값을 계산하는 일반적인 방법에 대하여 알아보았다. 다항함수/지수함수 형태로 이루어진 무한급수의 값 다항함수/계승함수 형태로 이루어진 무한급수의 값 위 ... Read More

이항계수(binomial coefficient)들의 조화평균과 이차평균

      Comments Off on 이항계수(binomial coefficient)들의 조화평균과 이차평균

예전에 "이항계수(binomial coefficient)들의 산술평균과 기하평균"이라는 주제로 글을 올린 적이 있다. 이번에는 이 주제를 좀 더 확장하여 이항계수들의 조화평균(harmonic mean) $H_n$과 이차평균(quadratic mean) $Q_n$에 대해서 생각해 보자. 여기서 $H_n$과 $Q_n$은 다음과 ... Read More

분할(partition)에 대한 오일러의 정리(Euler's theorem)

      Comments Off on 분할(partition)에 대한 오일러의 정리(Euler's theorem)

분할(partition)이란 주어진 양의 정수를 양의 정수들의 합으로 표현하는 방법을 연구하는 정수론 또는 조합론의 한 하위 분야이다. 양의 정수 $n$이 주어졌다고 하자. 그러면 $n$에 대한 분할수(partition number) $p(n)$은 $n$을 양의 정수들의 ... Read More

이항계수(binomial coefficient)들의 산술평균과 기하평균

      Comments Off on 이항계수(binomial coefficient)들의 산술평균과 기하평균

식 $(x+y)^n$을 전개하여 각 항의 계수를 적으면 아래와 같이 이항계수(binomial coefficient)가 나타난다. \[ \binom{n}{0},\; \binom{n}{1},\; \cdots,\; \binom{n}{n}. \] 이제 위 이항계수들의 산술평균(arithmetic mean)과 기하평균(geometric mean)을 각각 $A_n$, $G_n$이라 하자. 다시 ... Read More

조합 항등식의 조합론적 증명

      Comments Off on 조합 항등식의 조합론적 증명

이번 글에서는 몇 가지 조합 항등식(combination identity)들을 대수적인 방법이나 기타 다른 방법을 이용하지 않고 오직 조합론적 증명(combinatorial proof) 방법만을 이용하여 증명하려고 한다. 모든 증명은 기본적인 Double counting (한가지 대상을 두가지 ... Read More