$\newcommand{\Int}{\operatorname{int}} \newcommand{\Cl}{\operatorname{cl}}$위상공간 $(X,\, \mathcal{T})$에서 정의된 집합 $A \subset X$에 대하여, $\Int(A)$와 $\Cl(A)$를 각각 $A$의 내부(interior)와 폐포(closure)라 하자. $ $ 정의 1. 일반화된 열린집합 위상공간 $(X,\, \mathcal{T})$에서 정의된 집합 $A \subset... Read more »
$(X,\, \norm{\vphantom{|}\cdot})$가 노름공간(finite dimensional normed vector space)이라 하자. 그러면 하이네-보렐 정리(Heine-Borel theorem)에 의해 다음 사실이 성립한다. $ $ 정리. 하이네-보렐 정리(Heine-Borel theorem) $X$가 유한차원이면, 임의의 부분집합 $S$에 대하여 다음이 동치이다. $S$는 닫힌 집합(closed... Read more »
조밀성(compactness)은 위상수학 분야에서 가장 중요한 개념중의 하나이다. 하지만 처음 조밀성에 대한 정의를 처음 접할땐, 그 중요성이 한 눈에 와 닿지는 않는게 사실이다. 그것은 아마 다른 개념들과는 (예를 들어, 연속성(continuity)이나 연결성(connectedness)... Read more »
이전 글에서 우리가 흔히 위상수학이라고 부르는 일반위상수학(general topology) 또는 점-집합 위상수학(point-set topology)은 최소한의 공리로부터 시작하여 집합 위에서의 극한 및 연속성을 잘 정의하기 위해서 시작한 수학의 한 분야임을 살펴 보았다. 이를 다시... Read more »
위상수학은 무엇을 공부하는 학문일까? 오늘은 위상수학(topology)에 대한 일반적인 얘기로 시작해 보려고 한다. 우리가 흔히 학부 수준에서 접하는 위상수학은 사실 일반위상수학(general topology) 또는 점-집합 위상수학(point-set topology)으로 불리는 위상수학의 한 하위 분야로서,... Read more »