더 많은 특수각에 대한 삼각함수의 값
특수각에 대한 삼각함수의 값은 아래와 같이 주어진다. 아래 표에서 파란색으로 나타낸 숫자들의 변화에 주목하자. 각 $(a)$ $\sin(a)$ 또는 $\cos(b)$ 각 $(b)$ deg rad deg rad 0 0 $\dfrac{\sqrt{\textcolor{blue}{0}}}{2}$ $=$... Read more »
특수각에 대한 삼각함수의 값은 아래와 같이 주어진다. 아래 표에서 파란색으로 나타낸 숫자들의 변화에 주목하자. 각 $(a)$ $\sin(a)$ 또는 $\cos(b)$ 각 $(b)$ deg rad deg rad 0 0 $\dfrac{\sqrt{\textcolor{blue}{0}}}{2}$ $=$... Read more »
$\newcommand{\Prime}{\mathbb{P}}$조화급수(harmonic series)의 합, 즉 자연수의 역수의 합이 양의 무한대로 발산한다는 사실은 잘 알려져 있다. \[ \sum_{n=1}^{\infty} \frac{1}{n} = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \cdots = \infty \] 자연수의 역수의... Read more »
이번 글에서는 아래와 같은 형태의 문제에 대해서 생각해 볼 것이다. 목욕탕에 $n$명의 사람이 있다고 하자. 이 때, 몇 사람씩 그룹을 만들어 동그랗게 서서 서로가 앞사람의 등을 밀어주는 경우의 수 $D_n$은... Read more »
이번에 설명할 공식은 영국의 천문학자이자 수학자 에드몬드 핼리(Edmond Halley)가 발견한 자연로그를 거듭제곱근을 포함한 식의 극한으로 표현하는 방법이다. 정리. 임의의 $x>0$에 대하여 다음이 성립한다. \[ \ln{x} = \lim_{n \to \infty}... Read more »
탄젠트(tangent) 함수의 도함수(derivative)를 살짝만 변형해 보면 아래의 공식을 얻는다. \[ \begin{aligned} \frac{\mathrm{d}}{\mathrm{d}x}\, \tan(x) &= \sec^2(x) \\[5pt] &= 1 + \tan^2(x) \\[5pt] &= \left[ \sin^2(x) + \cos^2(x) \right] + \tan^2(x). \end{aligned}... Read more »
아래와 같은 조화급수(harmonic series)를 생각해 보자. \[ \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} + \cdots \] 이 급수가 양의 무한대로 발산한다는 사실은 잘 알려져 있다. 즉, 충분히... Read more »
위의 질문에 관한 간단하지만 신기한 증명이 있어서 올려본다. 정리. $s^t$가 유리수가 되게 하는 두 양의 무리수 $s$, $t$가 존재한다. 증명. 만약 $\sqrt{2}^{\sqrt{2}}$가 유리수라면 간단히 $s = t =... Read more »