Author Archives: Juyoung Jeong

특수한 형태의 무한급수와 벨수(Bell number), 감마함수(gamma function)와의 연관성

      Comments Off on 특수한 형태의 무한급수와 벨수(Bell number), 감마함수(gamma function)와의 연관성

이전 글에서 특수한 형태의 무한급수 (다항함수를 지수함수 또는 계승함수로 나눈 꼴의 무한급수) 의 값을 계산하는 일반적인 방법에 대하여 알아보았다. 다항함수/지수함수 형태로 이루어진 무한급수의 값 다항함수/계승함수 형태로 이루어진 무한급수의 값 위 ... Read More

다항함수/계승함수 형태로 이루어진 된 무한급수의 값

      Comments Off on 다항함수/계승함수 형태로 이루어진 된 무한급수의 값

이전 글 다항함수/지수함수 형태로 이루어진 된 무한급수의 값 에서 다항함수를 지수함수로 나눈 형태의 무한급수의 값을 구하는 일반적인 방법에 대하여 생각해 보았다. 이번에는 다음과 같이 \[ \sum_{n=0}^{\infty} \frac{n^2}{n!}, \quad \sum_{n=0}^{\infty} \frac{n^3 ... Read More

다항함수/지수함수 형태로 이루어진 무한급수의 값

      Comments Off on 다항함수/지수함수 형태로 이루어진 무한급수의 값

이번 글에서는 다음과 같이 다항함수를 지수함수로 나눈 형태의 무한급수들 \[ \sum_{n=0}^{\infty} \frac{n}{2^n}, \quad \sum_{n=0}^{\infty} \frac{n^2-3n+2}{4^{n+1}}, \quad \sum_{n=1}^{\infty} \frac{(n-2)^3}{(-3)^n} ,\, \ldots \] 의 값을 구하는 일반적인 방법에 대하여 알아볼 것이다. 이를 ... Read More

실수와 복소수 사이의 이상한 관계

      Comments Off on 실수와 복소수 사이의 이상한 관계

집합론을 배우면서 접하게 되는 (직관에 반하는) 정리 중의 하나는, $\R$은 $\C$의 진부분집합(proper subset)임에도 불구하고, $\R$과 $\C$의 기수(cardinality)가 같다는 사실이다. 따라서 집합론적인 관점에서는 $\R$과 $\C$를 같은 집합, 즉 동형(isomorphic)이라고 보아도 크게 ... Read More

피보나치 수열(Fibonacci sequence)과 그래프(graph)

      Comments Off on 피보나치 수열(Fibonacci sequence)과 그래프(graph)

피보나치 수열은 $F_{1} = F_{2} = 1$, $F_{n+2} = F_{n+1} + F_{n}$으로 귀납적으로 정의되는 수열로서 전혀 관련이 없는듯 보이는 수학의 여러가지 분야에서 심심치 않게 등장하고는 한다. 아래 글은 피보나치 수열의 ... Read More

두 행렬(matrix)의 기하평균(geometric mean)에 대하여

      Comments Off on 두 행렬(matrix)의 기하평균(geometric mean)에 대하여

주어진 두 실수 $a,\, b \in \R$의 평균(mean)을 구하는 다양한 방법이 존재하지만, 그 중에서 가장 잘 알려진 평균으로는 $a,\, b$의 산술평균(arithmetic mean): $A(a,\,b) = \dfrac{a+b}{2}$ 기하평균(geometric mean): $G(a,\, b) = ... Read More

주어진 함수가 도함수(derivative)가 될 필요/충분 조건

      Comments Off on 주어진 함수가 도함수(derivative)가 될 필요/충분 조건

실함수 $f : I \subseteq \R \to \R$이 주어졌다고 하자. 만약 어떤 실함수 $F : I \to \R$가 존재하여, 모든 $x \in I$에 대하여 $f(x) = F'(x)$를 만족할 때, $f$를 ... Read More

이항계수(binomial coefficient)들의 조화평균과 이차평균

      Comments Off on 이항계수(binomial coefficient)들의 조화평균과 이차평균

예전에 "이항계수(binomial coefficient)들의 산술평균과 기하평균"이라는 주제로 글을 올린 적이 있다. 이번에는 이 주제를 좀 더 확장하여 이항계수들의 조화평균(harmonic mean) $H_n$과 이차평균(quadratic mean) $Q_n$에 대해서 생각해 보자. 여기서 $H_n$과 $Q_n$은 다음과 ... Read More

피보나치 수열(Fibonacci sequence)과 역코탄젠트(arccotangent) 함수

      Comments Off on 피보나치 수열(Fibonacci sequence)과 역코탄젠트(arccotangent) 함수

다음과 같이 귀납적으로 정의된 수열 \[ F_{0} = 0,\, F_{1} = 1,\, F_{n+1} = F_{n} + F_{n-1} \, (n \geq 1) \] 을 피보나치 수열(Fibonacci sequence)이라 한다. 이번 글에서는 카시니 ... Read More

유리수를 나열하는 다른 방법 - Calkin-Wilf 나무 그래프(tree graph)

      Comments Off on 유리수를 나열하는 다른 방법 - Calkin-Wilf 나무 그래프(tree graph)

유리수의 집합 $\Q$가 셀수 있는 집합임을 잘 알려져 있다. 이를 다시 표현하면 "모든 유리수를 단 한번씩 포함하는 수열"을 구성하는 것이 가능하다는 말이 된다. 이러한 수열을 구성하는 가장 간단한 방법은 아래와 ... Read More