피보나치(Fibonacci) 수열, 루카스(Lucas) 수열, 그리고 삼각함수 - 2
이번 글에서는 저번 글 피보나치(Fibonacci) 수열, 루카스(Lucas) 수열, 그리고 삼각함수 - 1 에서 증명한 피보나치/루카스 수열과 삼각함수와의 관계를 다시 한 번 정리하면 다음과 같다: 임의의 음이 아닌 정수 $n \in... Read more »
이번 글에서는 저번 글 피보나치(Fibonacci) 수열, 루카스(Lucas) 수열, 그리고 삼각함수 - 1 에서 증명한 피보나치/루카스 수열과 삼각함수와의 관계를 다시 한 번 정리하면 다음과 같다: 임의의 음이 아닌 정수 $n \in... Read more »
피보나치 수열(Fibonacci sequence)은 $F_{0} = 0$, $F_{1} = 1$, $F_{n+2} = F_{n+1} + F_{n}$으로 정의된 대중적으로 가장 잘 알려진 수열 중 하나이다. 이 수열에 대한 성질에 대하여 몇 개의 글을... Read more »
평균값 정리(mean value theorem)는 두 점을 잇는 잘 정의된 곡선에 대하여, 이 곡선의 양 끝 점을 잇는 할선과 평행한 접선이 반드시 존재함을 알려 준다. 이 정리를 수학적으로 다시 적으면 다음과... Read more »
삼각함수(trigonometric function)와 쌍곡함수(hyperbolic function)는 서로 밀접한 관계가 있는데, 이는 복소수를 이용하여 다음과 같이 나타낼 수 있다. \[ \begin{align*} \sin(iz) &= i\sinh(z) & \sinh(iz) &= i\sin(z) \\[5px] \cos(iz) &= \cosh(z) &... Read more »
다음과 같이 두 무한급수를 정의하자. \[ \begin{align*} S_{1} &= \sum_{n=0}^{\infty} \frac{1}{2^n} = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \cdots \\[5px] S_{2} &= \sum_{n=0}^{\infty} \frac{n}{2^n} = 0... Read more »
미적분학에서 흔히 샌드위치 정리(sandwich theorem)로 잘 알려진 정리는 다음을 말한다. $ $ 정리. 샌드위치 정리(sandwich theorem) 점 $a$를 포함하는 구간 $I$에서 정의된 세 함수 $f$, $g$, $h$가 다음 조건을 만족한다고... Read more »
$U \subset \R^n$이 열린 볼록집합(open convex set)이라 하자. 이제 $U$ 위에서 주어진 벡터 함수 $F : U \to \R$의 편도함수가 모두 연속이고 \[ \partial_1 F(\vec{x}) = \partial_1 F(\vec{x}) = \cdots... Read more »
지난 글에서 다음과 같이 정의된 감마함수(gamma function) \[ \Gamma(z) := \int_{0}^{\infty} t^{z-1}e^{-t} \,dt, \qquad (\operatorname{Re}(z) > 0) \] 가 계승(factorial) 함수의 확장임을 보였다. 하지만 계승 함수는 자연수에서만 정의된 함수이므로 이를... Read more »
이번 글에서는 반지름이 $r$인 $n$차원 초구(hyperball)의 초부피(hypervolume)를 계산할 것이다. 논의를 간단히 하기 위하여 $V_n(r)$을 반지름이 $r$인 $n$차원 초구의 초부피로 정의하자. 먼저 $n=1$인 경우, 반지름이 $r$인 초구(선분)는 구간 $(-r,\, r)$과... Read more »
감마함수(gamma function)와 계승(factorial) 감마함수(gamma function)는 계승(factorial)을 일반화 한 형태의 함수로써, 다음과 같이 적분 형태로 정의된다. \[ \Gamma(z) := \int_{0}^{\infty} t^{z-1}e^{-t} \,dt, \qquad (\operatorname{Re}(z) > 0) \] 어떤 의미에서 감마함수가 계승의... Read more »