Category: Mathematics

이항계수(binomial coefficient)들의 산술평균과 기하평균

      Comments Off on 이항계수(binomial coefficient)들의 산술평균과 기하평균

(x+y)n을 전개하여 각 항의 계수를 적으면 아래와 같이 이항계수(binomial coefficient)가 나타난다. (n0),(n1),,(nn). 이제 위 이항계수들의 산술평균(arithmetic mean)과 기하평균(geometric mean)을 각각 An, Gn이라 하자. 다시... Read more »

조합 항등식의 조합론적 증명

      Comments Off on 조합 항등식의 조합론적 증명

이번 글에서는 몇 가지 조합 항등식(combination identity)들을 대수적인 방법이나 기타 다른 방법을 이용하지 않고 오직 조합론적 증명(combinatorial proof) 방법만을 이용하여 증명하려고 한다. 모든 증명은 기본적인 Double counting (한가지 대상을 두가지... Read more »

사원수(Quaternion)에 대하여 - 5. 사원수의 곱셈

      Comments Off on 사원수(Quaternion)에 대하여 - 5. 사원수의 곱셈

5. 사원수(Quaternion)의 곱셈 이제까지 사원수의(quaternion)의 곱셈이 아래의 식 \[ \begin{aligned} (a_1,\,b_1,\,c_1,\,d_1) &\times (a_2,\,b_2,\,c_2,\,d_2) \[5pt] &= (a_1a_2 - b_1b_2 - c_1c_2 - d_1d_2,\, a_1b_2 + b_1a_2 + c_1d_2 - d_1c_2, \[5pt] &... Read more »

사원수(Quaternion)에 대하여 - 4. 사중쌍(quadruple)과 사원수(Quaternion)

      Comments Off on 사원수(Quaternion)에 대하여 - 4. 사중쌍(quadruple)과 사원수(Quaternion)

사중쌍(quadruple)과 사원수(Quaternion) 삼중쌍(triple)에 대한 실패를 바탕으로 해밀턴은 사중쌍(quadruple)과 사중쌍의 사칙연산에 대한 연구를 시작하였다. 우선 해밀턴은 사중쌍 (a,b,c,d)=a+bi+cj+dk에 사칙연산에 대한 법칙 $i^2 =... Read more »

사원수(Quaternion)에 대하여 - 3. 삼중쌍(triple)의 실패

      Comments Off on 사원수(Quaternion)에 대하여 - 3. 삼중쌍(triple)의 실패

3. 삼중쌍(triple)의 실패 해밀턴은 우선 삼중쌍(triple)을 아래와 같이 이중쌍(couple)을 확장한 것으로써 정의하였다. (a,b,c),a,b,cR. 그 다음 삼중쌍들 사이의 사칙연산을 잘 정의하여, 실수의 사칙연산과 이중쌍의 사칙연산이... Read more »

사원수(Quaternion)에 대하여 - 1. 소개 2. 복소수와 복소수의 성질

      Comments Off on 사원수(Quaternion)에 대하여 - 1. 소개 2. 복소수와 복소수의 성질

1. 소개 수학의 모든 위대한 발견들은 당대의 천재들의 번뜩이는 영감에 의해서 어느날 갑자기 이루어지는 것이 아니다. 선대의 수많은 수학자들이 앞서 발견하고 정리해 온 수학적 토대 위에 적게는 수개월에서 많게는 수십년에... Read more »

셔먼-모리슨-우드버리 공식(Sherman–Morrison-Woodbury formula)

      Comments Off on 셔먼-모리슨-우드버리 공식(Sherman–Morrison-Woodbury formula)

지난 글에서는 주어진 행렬 A의 행렬식과 역행렬을 알고 있을 때, 이 행렬을 계수(rank)가 1인 행렬 unvnT을 이용하여 갱신한 새로운 행렬 A+unvnT의 행렬식을 구하는 방법에 대하여 알아보았다.... Read more »

행렬식 보조정리(Matrix Determinant Lemma)

      Comments Off on 행렬식 보조정리(Matrix Determinant Lemma)

어떤 행렬에 대한 계산을 필요로 하는 소스코드를 작성중이라 해보자. 이제 코딩을 하던 중에 어떤 반복문을 작성해야 하는데, 일단 행렬 An이 주어져 있고 이 행렬 An의 행렬식(determinant)역행렬을 계산했다고 하자. 이제 이... Read more »

기댓값(expectation)을 이용한 재밌는 증명

      Comments Off on 기댓값(expectation)을 이용한 재밌는 증명

이번에 증명하고자 하는 정리는, 정리의 내용 자체만으로도 흥미로울 뿐만 아니라, 정리를 증명하는 방법 또한 매우 신기해서 이곳에 그 내용을 정리해서 올려보고자 한다. 이 정리는 Quadratic Semidefinite Programming 분야에서 S-lemma라고 불리는 정리를 증명할... Read more »