식 $(x+y)^n$을 전개하여 각 항의 계수를 적으면 아래와 같이 이항계수(binomial coefficient)가 나타난다. \[ \binom{n}{0},\; \binom{n}{1},\; \cdots,\; \binom{n}{n}. \] 이제 위 이항계수들의 산술평균(arithmetic mean)과 기하평균(geometric mean)을 각각 $A_n$, $G_n$이라 하자. 다시... Read more »
이번 글에서는 몇 가지 조합 항등식(combination identity)들을 대수적인 방법이나 기타 다른 방법을 이용하지 않고 오직 조합론적 증명(combinatorial proof) 방법만을 이용하여 증명하려고 한다. 모든 증명은 기본적인 Double counting (한가지 대상을 두가지... Read more »
5. 사원수(Quaternion)의 곱셈 이제까지 사원수의(quaternion)의 곱셈이 아래의 식 \[ \begin{aligned} (a_1,\,b_1,\,c_1,\,d_1) &\times (a_2,\,b_2,\,c_2,\,d_2) \\[5pt] &= (a_1a_2 - b_1b_2 - c_1c_2 - d_1d_2,\, a_1b_2 + b_1a_2 + c_1d_2 - d_1c_2, \\[5pt] &... Read more »
사중쌍(quadruple)과 사원수(Quaternion) 삼중쌍(triple)에 대한 실패를 바탕으로 해밀턴은 사중쌍(quadruple)과 사중쌍의 사칙연산에 대한 연구를 시작하였다. 우선 해밀턴은 사중쌍 $(a,\,b,\,c,\,d) = a + bi + cj + dk$에 사칙연산에 대한 법칙 $i^2 =... Read more »
3. 삼중쌍(triple)의 실패 해밀턴은 우선 삼중쌍(triple)을 아래와 같이 이중쌍(couple)을 확장한 것으로써 정의하였다. \[ (a,\,b,\,c), \quad a,\,b,\,c \in \R. \] 그 다음 삼중쌍들 사이의 사칙연산을 잘 정의하여, 실수의 사칙연산과 이중쌍의 사칙연산이... Read more »
1. 소개 수학의 모든 위대한 발견들은 당대의 천재들의 번뜩이는 영감에 의해서 어느날 갑자기 이루어지는 것이 아니다. 선대의 수많은 수학자들이 앞서 발견하고 정리해 온 수학적 토대 위에 적게는 수개월에서 많게는 수십년에... Read more »
지난 글에서는 주어진 행렬 $A$의 행렬식과 역행렬을 알고 있을 때, 이 행렬을 계수(rank)가 1인 행렬 $\mathbf{u}_n \mathbf{v}_n^\T$을 이용하여 갱신한 새로운 행렬 $A + \mathbf{u}_n \mathbf{v}_n^\T$의 행렬식을 구하는 방법에 대하여 알아보았다.... Read more »
$\newcommand{adj}{\operatorname{adj}}$어떤 행렬에 대한 계산을 필요로 하는 소스코드를 작성중이라 해보자. 이제 코딩을 하던 중에 어떤 반복문을 작성해야 하는데, 일단 행렬 $A_n$이 주어져 있고 이 행렬 $A_n$의 행렬식(determinant)역행렬을 계산했다고 하자. 이제 이... Read more »
이번에 증명하고자 하는 정리는, 정리의 내용 자체만으로도 흥미로울 뿐만 아니라, 정리를 증명하는 방법 또한 매우 신기해서 이곳에 그 내용을 정리해서 올려보고자 한다. 이 정리는 Quadratic Semidefinite Programming 분야에서 S-lemma라고 불리는 정리를 증명할... Read more »