실수와 복소수 사이의 이상한 관계
집합론을 배우면서 접하게 되는 (직관에 반하는) 정리 중의 하나는, $\R$은 $\C$의 진부분집합(proper subset)임에도 불구하고, $\R$과 $\C$의 기수(cardinality)가 같다는 사실이다. 따라서 집합론적인 관점에서는 $\R$과 $\C$를 같은 집합, 즉 동형(isomorphic)이라고 보아도 크게... Read more »
집합론을 배우면서 접하게 되는 (직관에 반하는) 정리 중의 하나는, $\R$은 $\C$의 진부분집합(proper subset)임에도 불구하고, $\R$과 $\C$의 기수(cardinality)가 같다는 사실이다. 따라서 집합론적인 관점에서는 $\R$과 $\C$를 같은 집합, 즉 동형(isomorphic)이라고 보아도 크게... Read more »
피보나치 수열은 $F_{1} = F_{2} = 1$, $F_{n+2} = F_{n+1} + F_{n}$으로 귀납적으로 정의되는 수열로서 전혀 관련이 없는듯 보이는 수학의 여러가지 분야에서 심심치 않게 등장하고는 한다. 아래 글은 피보나치 수열의... Read more »
주어진 두 실수 $a,\, b \in \R$의 평균(mean)을 구하는 다양한 방법이 존재하지만, 그 중에서 가장 잘 알려진 평균으로는 $a,\, b$의 산술평균(arithmetic mean): $A(a,\,b) = \dfrac{a+b}{2}$ 기하평균(geometric mean): $G(a,\, b) =... Read more »
실함수 $f : I \subseteq \R \to \R$이 주어졌다고 하자. 만약 어떤 실함수 $F : I \to \R$가 존재하여, 모든 $x \in I$에 대하여 $f(x) = F'(x)$를 만족할 때, $f$를... Read more »
예전에 "이항계수(binomial coefficient)들의 산술평균과 기하평균"이라는 주제로 글을 올린 적이 있다. 이번에는 이 주제를 좀 더 확장하여 이항계수들의 조화평균(harmonic mean) $H_n$과 이차평균(quadratic mean) $Q_n$에 대해서 생각해 보자. 여기서 $H_n$과 $Q_n$은 다음과... Read more »
다음과 같이 귀납적으로 정의된 수열 \[ F_{0} = 0,\, F_{1} = 1,\, F_{n+1} = F_{n} + F_{n-1} \, (n \geq 1) \] 을 피보나치 수열(Fibonacci sequence)이라 한다. 이번 글에서는 카시니... Read more »
유리수의 집합 $\Q$가 셀수 있는 집합임을 잘 알려져 있다. 이를 다시 표현하면 "모든 유리수를 단 한번씩 포함하는 수열"을 구성하는 것이 가능하다는 말이 된다. 이러한 수열을 구성하는 가장 간단한 방법은 아래와... Read more »
브레치나이더 공식(Bretschneider's formula)은 임의의 사각형의 네 변의 길이와 마주보는 두 각의 크기를 이용하여 사각형의 넓이를 계산하는 공식을 뜻한다. 이 공식은 원에 내접한 사각형의 넓이를 구하는 브라마굽타 공식(Brahmagupta's formula)과 삼각형의 넓이를... Read more »
실함수 $f : I \subset \R \to I$가 주어졌다고 하자. 만약 임의의 $x \in I$에 대하여 \[ f(f(x)) = x \quad \text{or} \quad f(x) = f^{-1}(x) \] 가 성립하면, 함수... Read more »
다음의 계산을 보자. \[ \begin{matrix} & 2 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 2 \\ + &... Read more »