Category: Algebra

실수와 복소수 사이의 이상한 관계

      Comments Off on 실수와 복소수 사이의 이상한 관계

집합론을 배우면서 접하게 되는 (직관에 반하는) 정리 중의 하나는, $\R$은 $\C$의 진부분집합(proper subset)임에도 불구하고, $\R$과 $\C$의 기수(cardinality)가 같다는 사실이다. 따라서 집합론적인 관점에서는 $\R$과 $\C$를 같은 집합, 즉 동형(isomorphic)이라고 보아도 크게 ... Read More

두 행렬(matrix)의 기하평균(geometric mean)에 대하여

      Comments Off on 두 행렬(matrix)의 기하평균(geometric mean)에 대하여

주어진 두 실수 $a,\, b \in \R$의 평균(mean)을 구하는 다양한 방법이 존재하지만, 그 중에서 가장 잘 알려진 평균으로는 $a,\, b$의 산술평균(arithmetic mean): $A(a,\,b) = \dfrac{a+b}{2}$ 기하평균(geometric mean): $G(a,\, b) = ... Read More

분할(partition)에 대한 오일러의 정리(Euler's theorem)

      Comments Off on 분할(partition)에 대한 오일러의 정리(Euler's theorem)

분할(partition)이란 주어진 양의 정수를 양의 정수들의 합으로 표현하는 방법을 연구하는 정수론 또는 조합론의 한 하위 분야이다. 양의 정수 $n$이 주어졌다고 하자. 그러면 $n$에 대한 분할수(partition number) $p(n)$은 $n$을 양의 정수들의 ... Read More

무한차원 벡터공간(vector space)의 기저(basis)

      Comments Off on 무한차원 벡터공간(vector space)의 기저(basis)

일반적으로 $n$차원 벡터공간(vector space) $\R^n$의 표준기저(standard basis)를 다음과 같이 정의한다. \[ B_n = \{ e_1,\, e_2,\, \ldots,\, e_n \} \] 여기서 각각의 $i = 1,\, \ldots,\, n$에 대하여 $e_i$는 $i$번째 ... Read More

멱영행렬(nilpotent matrix)과 고윳값(eigenvalue) 사이의 관계

      Comments Off on 멱영행렬(nilpotent matrix)과 고윳값(eigenvalue) 사이의 관계

$n \times n$ 정사각행렬 $A$가 주어졌다고 하자. 만약 적당한 양의 정수 $k$가 존재하여 $A^k = 0$이 성립하면, $A$를 멱영행렬(nilpotent matrix)라 정의한다. 멱영행렬의 고윳값(eigenvalue)를 생각해 보면 재미있는 사실을 발견할 수 있는데, ... Read More

르장드르의 정리(Legendre's theorem)와 쿠머의 정리(Kummer's theorem)

      Comments Off on 르장드르의 정리(Legendre's theorem)와 쿠머의 정리(Kummer's theorem)

소수 $p$가 주어졌다고 하자. $0$이 아닌 임의의 정수 $n$에 대하여, $n$의 $p$진 값매김($p$-adic valuation)은 $\nu_{p}(n)$을 $p^{\nu}$가 $n$를 나누게 하는 양의 정수 $\nu$ 중 가장 큰 수로 정의한다. 또한 $\nu_{p}(0) = ... Read More

군론(group theory)를 이용한 정수론의 정리 증명

      Comments Off on 군론(group theory)를 이용한 정수론의 정리 증명

정수론에서 합동(modular)의 개념을 정의하고 나서 바로 배우는 세 가지의 정리가 있다. 이들은 각각 페르마의 소정리(Fermat's little theorem), 오일러의 정리(Euler's theorem), 그리고 윌슨의 정리(Wilson's theorem)를 말하는데, 이 정리를 기반으로 합동식에 대한 ... Read More

택시캡수(taxicab number)와 캡택시수(cabtaxi number)

      Comments Off on 택시캡수(taxicab number)와 캡택시수(cabtaxi number)

다음은 수학자 하디(G. H. Hardy)가 그의 제자 라마누잔(S. Ramanujan)의 병문안을 갔을 때의 일화이다. 1918년 2월, 입원 중이던 라마누잔의 병문안을 가시 위해서 하디가 탄 택시의 번호는 $1729$였다. 병원에 도착한 하디는 라마누잔에게 ... Read More

짝수 완전수(perfect number)와 메르센 소수(Mersenne prime)

      Comments Off on 짝수 완전수(perfect number)와 메르센 소수(Mersenne prime)

완전수(perfect number) 정수론에서, 완전수(perfect number)란 자기 자신을 제외한 양의 약수를 모두 더했을 때 자기 자신이 되는 양의 정수를 말한다. 예를 들어 $6$의 양의 약수는 $1,\,2,\,3,\,6$이고, $1 + 2 + 3 ... Read More