Category: Analysis

주어진 함수가 도함수(derivative)가 될 필요/충분 조건

      Comments Off on 주어진 함수가 도함수(derivative)가 될 필요/충분 조건

실함수 $f : I \subseteq \R \to \R$이 주어졌다고 하자. 만약 어떤 실함수 $F : I \to \R$가 존재하여, 모든 $x \in I$에 대하여 $f(x) = F'(x)$를 만족할 때, $f$를 ... Read More

무한차원 벡터공간(vector space)의 기저(basis)

      Comments Off on 무한차원 벡터공간(vector space)의 기저(basis)

일반적으로 $n$차원 벡터공간(vector space) $\R^n$의 표준기저(standard basis)를 다음과 같이 정의한다. \[ B_n = \{ e_1,\, e_2,\, \ldots,\, e_n \} \] 여기서 각각의 $i = 1,\, \ldots,\, n$에 대하여 $e_i$는 $i$번째 ... Read More

구데르만 함수(Gudermannian function)에 대하여

      Comments Off on 구데르만 함수(Gudermannian function)에 대하여

삼각함수(trigonometric function)와 쌍곡함수(hyperbolic function)는 서로 밀접한 관계가 있는데, 이는 복소수를 이용하여 다음과 같이 나타낼 수 있다. \[ \begin{align*} \sin(iz) &= i\sinh(z) & \sinh(iz) &= i\sin(z) \\[5px] \cos(iz) &= \cosh(z) & ... Read More

두 무한급수의 합

      Comments Off on 두 무한급수의 합

다음과 같이 두 무한급수를 정의하자. \[ \begin{align*} S_{1} &= \sum_{n=0}^{\infty} \frac{1}{2^n} = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \cdots \\[5px] S_{2} &= \sum_{n=0}^{\infty} \frac{n}{2^n} = 0 ... Read More

편도함수가 모두 같은 함수

      Comments Off on 편도함수가 모두 같은 함수

$U \subset \R^n$이 열린 볼록집합(open convex set)이라 하자. 이제 $U$ 위에서 주어진 벡터 함수 $F : U \to \R$의 편도함수가 모두 연속이고 \[ \partial_1 F(\vec{x}) = \partial_1 F(\vec{x}) = \cdots ... Read More

감마함수(gamma function)의 유일성(uniqueness)

      Comments Off on 감마함수(gamma function)의 유일성(uniqueness)

지난 글에서 다음과 같이 정의된 감마함수(gamma function) \[ \Gamma(z) := \int_{0}^{\infty} t^{z-1}e^{-t} \,dt, \qquad (\operatorname{Re}(z) > 0) \] 가 계승(factorial) 함수의 확장임을 보였다. 하지만 계승 함수는 자연수에서만 정의된 함수이므로 이를 ... Read More

$n$차원 초구(hyperball)의 초부피(hypervolume)

      Comments Off on $n$차원 초구(hyperball)의 초부피(hypervolume)

이번 글에서는 반지름이 $r$인 $n$차원 초구(hyperball)의 초부피(hypervolume)를 계산할 것이다. 논의를 간단히 하기 위하여 $V_n(r)$을 반지름이 $r$인 $n$차원 초구의 초부피로 정의하자.   먼저 $n=1$인 경우, 반지름이 $r$인 초구(선분)는 구간 $(-r,\, r)$과 ... Read More

감마함수(gamma function)와 베타함수(beta function)

      Comments Off on 감마함수(gamma function)와 베타함수(beta function)

감마함수(gamma function)와 계승(factorial) 감마함수(gamma function)는 계승(factorial)을 일반화 한 형태의 함수로써, 다음과 같이 적분 형태로 정의된다. \[ \Gamma(z) := \int_{0}^{\infty} t^{z-1}e^{-t} \,dt, \qquad (\operatorname{Re}(z) > 0) \]   어떤 의미에서 감마함수가 계승의 ... Read More